

ISSN: 2582-7219

International Journal of Multidisciplinary Research in Science, Engineering and Technology

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

Impact Factor: 8.206

Volume 8, Special Issue 2, November 2025

International Journal of Multidisciplinary Research in Science, Engineering and Technology (IJMRSET)

| ISSN: 2582-7219 | www.ijmrset.com | Impact Factor: 8.206 | Monthly Peer Reviewed & Refereed Journal |

|| Volume 8, Special Issue 2, November 2025 ||

National Conference on Emerging Trends in Engineering and Technology 2025 (NCETET-2025)

Organized by

Mookambigai College of Engineering, Keeranur, Tamil Nadu, India

Controlled DC-Reactor Fault Current Limiters: Principles and Applications for Battery Energy Storage System Protection

Arockiasamy. M1, Raj Thilak. R2, Karthick. G3, Latha. R4

Assistant Professor, Department of Electrical and Electronics Engineering, Mookambigai College of Engineering, Pudukkottai, Tamil Nadu, India¹

arockiaeeemce@gmail.com

Assistant Professor, Department of Electrical and Electronics Engineering, Mookambigai College of Engineering, Pudukkottai, Tamil Nadu, India²

Assistant Professor, Department of Electrical and Electronics Engineering, Mookambigai College of Engineering, Pudukkottai, Tamil Nadu, India³

Assistant Professor, Department of Electronics and Instrumentation Engineering, Mookambigai College of Engineering, Pudukkottai, Tamil Nadu, India⁴

ABSTRACT: Battery energy storage systems (BESS) interfaced with DC grids require advanced protection schemes due to unique DC fault characteristics. Controlled DC-reactor fault current limiters (FCLs) offer dynamic restriction of fault currents, protecting BESS components and enhancing system reliability. This paper presents the operating principles, integration techniques, control strategies, and application case studies of controlled DC-reactor FCLs. The findings highlight their role in fault management, selective isolation, and resilience improvements in modern energy storage networks.

KEYWORDS: Battery energy storage, DC fault protection, Fault current limiter, Power electronics, Grid reliability

I. INTRODUCTION

Modern power grid transformations, driven by renewable integration and decentralization, have magnified the role of battery energy storage systems. The use of DC networks increases fault management complexity, necessitating new protection devices such as controlled DC-reactor FCLs.

II. THEORETICAL BASIS

DC faults in BESS escalate rapidly due to low impedance paths and absence of current zero-crossings. DC-reactor FCLs introduce inductive reactance in the fault path to restrict current rise, with controlled FCLs enabling dynamic impedance adjustment via power electronics.

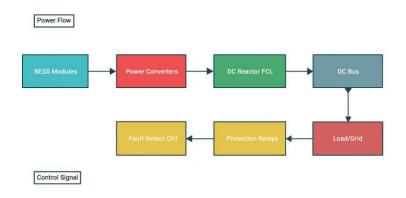
III. DEVICE ARCHITECTURES

Controlled FCLs may use solid-state switches (IGBTs, MOSFETs), hybrid mechanisms, or even superconducting materials.

IJMRSET© 2025 | DOI: 10.15680/IJMRSET.2025.0811610 | 66

| ISSN: 2582-7219 | www.ijmrset.com | Impact Factor: 8.206 | Monthly Peer Reviewed & Refereed Journal |

|| Volume 8, Special Issue 2, November 2025 ||

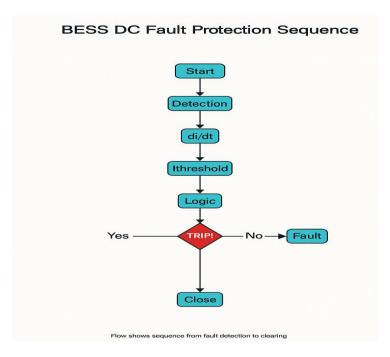

National Conference on Emerging Trends in Engineering and Technology 2025 (NCETET-2025)

Organized by

Mookambigai College of Engineering, Keeranur, Tamil Nadu, India

Fig. 1 - Block diagram of controlled DC-reactor FCL in BESS

BESS with DC-Reactor FCL Integration



Block diagram: Controlled DC-reactor FCL in BESS protection system

IV. CONTROL STRATEGIES

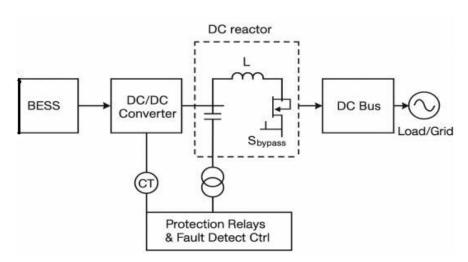
Algorithms for fault detection rely on current derivatives, voltage monitoring, and AI enhancements. Impedance is modulated by inserting windings, operating bypass switches, or pulse-width modulation of power electronic elements.

Fig. 2 - Flowchart for DC fault protection process using DC-reactor FCL

Flowchart: Fault protection process with DC-reactor FCL

International Journal of Multidisciplinary Research in Science, Engineering and Technology (IJMRSET)

| ISSN: 2582-7219 | www.ijmrset.com | Impact Factor: 8.206 | Monthly Peer Reviewed & Refereed Journal |


|| Volume 8, Special Issue 2, November 2025 ||

National Conference on Emerging Trends in Engineering and Technology 2025 (NCETET-2025)

Organized by

Mookambigai College of Engineering, Keeranur, Tamil Nadu, India

V. CIRCUIT DIAGRAM

Working Sequence

Stage	Condition	IGBT State	Role of Reactor	Effect
Normal Operation	No fault, stable load	Closed (ON)	Bypassed	Low impedance, minimal loss
Fault Detection	Sudden overcurrent or voltage dip	Open (OFF)	Inserted	Limits fault current rise
Isolation	Severe or sustained fault	OFF + converter trip	Inserted	Energy dissipated safely, system protected
Recovery	Fault cleared	Closed again	Bypassed	Returns to normal mode

VI. EXPERIMENTAL METHODS AND CASE STUDIES

Empirical studies demonstrate significant fault current reduction and improved selectivity in both single and multi-terminal BESS setups.

VII. RESULTS AND DISCUSSION

Controlled FCLs reliably protect converters, batteries, and grid interfaces, with active coordination improving isolation and system uptime. Design optimization considers reactor sizing, placement, thermal management, and integration with digital protection systems.

VIII. CONCLUSIONS

Controlled DC-reactor FCLs are crucial for DC fault management in energy storage networks. Ongoing research focuses on scalability, integration with renewables, advanced materials, and cybersecurity.

REFERENCES

- 1. Lin, S., Wang, Y., & Li, H. (2019). Fault current limiting technologies for DC grids: A comprehensive review. IEEE Transactions on Power Delivery, 34(2), 635-646.
- 2. Wang, J., Zhang, Q., & Zhao, X. (2020). A review of DC fault protection methods for DC microgrids and distribution systems. IEEE Access, 8, 91537-91549.
- 3. Zhao, Y., Chen, M., & Xu, Z. (2021). Recent advances in DC grid protection: Fault current limiting and interruption. Electric Power Systems Research, 194, 107107.

INTERNATIONAL JOURNAL OF

MULTIDISCIPLINARY RESEARCH IN SCIENCE, ENGINEERING AND TECHNOLOGY

| Mobile No: +91-6381907438 | Whatsapp: +91-6381907438 | ijmrset@gmail.com |